Can Carbon-Dioxide Removal Save the World?

manostaxx3
http://www.manostaxx.com

CO2 could soon reach levels that, it’s widely agreed, will lead to catastrophe.

Carbon Engineering, a company owned in part by Bill Gates, has its headquarters on a spit of land that juts into Howe Sound, an hour north of Vancouver. Until recently, the land was a toxic-waste site, and the company’s equipment occupies a long, barnlike building that, for many years, was used to process contaminated water. The offices, inherited from the business that poisoned the site, provide a spectacular view of Mt. Garibaldi, which rises to a snow-covered point, and of the Chief, a granite monolith that’s British Columbia’s answer to El Capitan. To protect the spit against rising sea levels, the local government is planning to cover it with a layer of fill six feet deep. When that’s done, it’s hoping to sell the site for luxury condos.

Adrian Corless, Carbon Engineering’s chief executive, who is fifty-one, is a compact man with dark hair, a square jaw, and a concerned expression. “Do you wear contacts?” he asked, as we were suiting up to enter the barnlike building. If so, I’d have to take extra precautions, because some of the chemicals used in the building could cause the lenses to liquefy and fuse to my eyes.

Inside, pipes snaked along the walls and overhead. The thrum of machinery made it hard to hear. In one corner, what looked like oversized beach bags were filled with what looked like white sand. This, Corless explained over the noise, was limestone—pellets of pure calcium carbonate.

Corless and his team are engaged in a project that falls somewhere between toxic-waste cleanup and alchemy. They’ve devised a process that allows them, in effect, to suck carbon dioxide out of the air. Every day at the plant, roughly a ton of CO2 that had previously floated over Mt. Garibaldi or the Chief is converted into calcium carbonate. The pellets are subsequently heated, and the gas is forced off, to be stored in cannisters. The calcium can then be recovered, and the process run through all over again.

“If we’re successful at building a business around carbon removal, these are trillion-dollar markets,” Corless told me.

This past April, the concentration of carbon dioxide in the atmosphere reached a record four hundred and ten parts per million. The amount of CO2 in the air now is probably greater than it’s been at any time since the mid-Pliocene, three and a half million years ago, when there was a lot less ice at the poles and sea levels were sixty feet higher. This year’s record will be surpassed next year, and next year’s the year after that. Even if every country fulfills the pledges made in the Paris climate accord—and the United States has said that it doesn’t intend to—carbon dioxide could soon reach levels that, it’s widely agreed, will lead to catastrophe, assuming it hasn’t already done so.

Carbon-dioxide removal is, potentially, a trillion-dollar enterprise because it offers a way not just to slow the rise in CO2 but to reverse it. The process is sometimes referred to as “negative emissions”: instead of adding carbon to the air, it subtracts it. Carbon-removal plants could be built anywhere, or everywhere. Construct enough of them and, in theory at least, CO2 emissions could continue unabated and still we could avert calamity. Depending on how you look at things, the technology represents either the ultimate insurance policy or the ultimate moral hazard.

Lackner, who is sixty-five, grew up in Germany. He is tall and lanky, with a fringe of gray hair and a prominent forehead. I met him in his office at an institute he runs, the Center for Negative Carbon Emissions. The office was bare, except for a few New Yorker cartoons on the theme of nerd-dom, which, Lackner told me, his wife had cut out for him. In one, a couple of scientists stand in front of an enormous whiteboard covered in equations. “The math is right,” one of them says. “It’s just in poor taste.”

In the late nineteen-seventies, Lackner moved from Germany to California to study with George Zweig, one of the discoverers of quarks. A few years later, he got a job at Los Alamos National Laboratory. There, he worked on fusion. “Some of the work was classified,” he said, “some of it not.”

Fusion is the process that powers the stars and, closer to home, thermonuclear bombs. When Lackner was at Los Alamos, it was being touted as a solution to the world’s energy problem; if fusion could be harnessed, it could generate vast amounts of carbon-free power using isotopes of hydrogen. Lackner became convinced that a fusion reactor was, at a minimum, decades away. (Decades later, it’s generally agreed that a workable reactor is still decades away.) Meanwhile, the globe’s growing population would demand more and more energy, and this demand would be met, for the most part, with fossil fuels.

“I realized, probably earlier than most, that the claims of the demise of fossil fuels were greatly exaggerated,” Lackner told me. (In fact, fossil fuels currently provide about eighty per cent of the world’s energy. Proportionally, this figure hasn’t changed much since the mid-eighties, but, because global energy use has nearly doubled, the amount of coal, oil, and natural gas being burned today is almost two times greater.)

One evening in the early nineties, Lackner was having a beer with a friend, Christopher Wendt, also a physicist. The two got to wondering why, as Lackner put it to me, “nobody’s doing these really crazy, big things anymore.” This led to more questions and more conversations (and possibly more beers).

Eventually, the two produced an equation-dense paper in which they argued that self-replicating machines could solve the world’s energy problem and, more or less at the same time, clean up the mess humans have made by burning fossil fuels. The machines would be powered by solar panels, and as they multiplied they’d produce more solar panels, which they’d assemble using elements, like silicon and aluminum, extracted from ordinary dirt. The expanding collection of panels would produce ever more power, at a rate that would increase exponentially. An array covering three hundred and eighty-six thousand square miles—an area larger than Nigeria but, as Lackner and Wendt noted, “smaller than many deserts”—could supply all the world’s electricity many times over.

This same array could be put to use scrubbing carbon dioxide from the atmosphere. According to Lackner and Wendt, the power generated by a Nigeria-size solar farm would be enough to remove all the CO2 emitted by humans up to that point within five years. Ideally, the CO2 would be converted to rock, similar to the white sand produced by Carbon Engineering; enough would be created to cover Venezuela in a layer a foot and a half deep. (Where this rock would go the two did not specify.)

Lackner let the idea of the self-replicating machine slide, but he became more and more intrigued by carbon-dioxide removal, particularly by what’s become known as “direct air capture.”

“Sometimes by thinking through this extreme end point you learn a lot,” he said. He began giving talks and writing papers on the subject. Some scientists decided he was nuts, others that he was a visionary. “Klaus is, in fact, a genius,” Julio Friedmann, a former Principal Deputy Assistant Secretary of Energy and an expert on carbon management, told me.

In 2000, Lackner received a job offer from Columbia University. Once in New York, he pitched a plan for developing a carbon-sucking technology to Gary Comer, a founder of Lands’ End. Comer brought to the meeting his investment adviser, who quipped that Lackner wasn’t looking for venture capital so much as “adventure capital.” Nevertheless, Comer offered to put up five million dollars. The new company was called Global Research Technologies, or G.R.T. It got as far as building a small prototype, but just as it was looking for new investors the financial crisis hit.

“Our timing was exquisite,” Lackner told me. Unable to raise more funds, the company ceased operations. As the planet continued to warm, and carbon-dioxide levels continued to climb, Lackner came to believe that, unwittingly, humanity had already committed itself to negative emissions.

“I think that we’re in a very uncomfortable situation,” he said. “I would argue that if technologies to pull CO2 out of the environment fail then we’re in deep trouble.”

Lackner founded the Center for Negative Carbon Emissions at A.S.U. in 2014. Most of the equipment he dreams up is put together in a workshop a few blocks from his office. The day I was there, it was so hot outside that even the five-minute walk to the workshop required staging. Lackner delivered a short lecture on the dangers of dehydration and handed me a bottle of water.

In the workshop, an engineer was tinkering with what looked like the guts of a foldout couch. Where, in the living-room version, there would have been a mattress, in this one was an elaborate array of plastic ribbons. Embedded in each ribbon was a powder made from thousands upon thousands of tiny amber-colored beads. The beads, Lackner explained, could be purchased by the truckload; they were composed of a resin normally used in water treatment to remove chemicals like nitrates. More or less by accident, Lackner had discovered that the beads could be repurposed. Dry, they’d absorb carbon dioxide. Wet, they’d release it. The idea was to expose the ribbons to Arizona’s thirsty air, and then fold the device into a sealed container filled with water. The CO2 that had been captured by the powder in the dry phase would be released in the wet phase; it could then be piped out of the container, and the whole process re-started, the couch folding and unfolding over and over again.

Lackner has calculated that an apparatus the size of a semi trailer could remove a ton of carbon dioxide per day, or three hundred and sixty-five tons a year. The world’s cars, planes, refineries, and power plants now produce about thirty-six billion tons of CO2 annually, so, he told me, “if you built a hundred million trailer-size units you could actually keep up with current emissions.” He acknowledged that the figure sounded daunting. But, he noted, the iPhone has been around for only a decade or so, and there are now seven hundred million in use. “We are still very early in this game,” he said.

The way Lackner sees things, the key to avoiding “deep trouble” is thinking differently. “We need to change the paradigm,” he told me. Carbon dioxide should be regarded the same way we view other waste products, like sewage or garbage. We don’t expect people to stop producing waste. (“Rewarding people for going to the bathroom less would be nonsensical,” Lackner has observed.) At the same time, we don’t let them shit on the sidewalk or toss their empty yogurt containers into the street.

“If I were to tell you that the garbage I’m dumping in front of your house is twenty per cent less this year than it was last year, you would still think I’m doing something intolerable,” Lackner said.

One of the reasons we’ve made so little progress on climate change, he contends, is that the issue has acquired an ethical charge, which has polarized people. To the extent that emissions are seen as bad, emitters become guilty. “Such a moral stance makes virtually everyone a sinner, and makes hypocrites out of many who are concerned about climate change but still partake in the benefits of modernity,” he has written. Changing the paradigm, Lackner believes, will change the conversation. If CO2 is treated as just another form of waste, which has to be disposed of, then people can stop arguing about whether it’s a problem and finally start doing something.

Carbon dioxide was “discovered,” by a Scottish physician named Joseph Black, in 1754. A decade later, another Scotsman, James Watt, invented a more efficient steam engine, ushering in what is now called the age of industrialization but which future generations may dub the age of emissions. It is likely that by the end of the nineteenth century human activity had raised the average temperature of the earth by a tenth of a degree Celsius (or nearly two-tenths of a degree Fahrenheit).

As the world warmed, it started to change, first gradually and then suddenly. By now, the globe is at least one degree Celsius (1.8 degrees Fahrenheit) warmer than it was in Black’s day, and the consequences are becoming ever more apparent. Heat waves are hotter, rainstorms more intense, and droughts drier. The wildfire season is growing longer, and fires, like the ones that recently ravaged Northern California, more numerous. Sea levels are rising, and the rate of rise is accelerating. Higher sea levels exacerbated the damage from Hurricanes Harvey, Irma, and Maria, and higher water temperatures probably also made the storms more ferocious. “Harvey is what climate change looks like,” Eric Holthaus, a meteorologist turned columnist, recently wrote.

Meanwhile, still more warming is locked in. There’s so much inertia in the climate system, which is as vast as the earth itself, that the globe has yet to fully adjust to the hundreds of billions of tons of carbon dioxide that have been added to the atmosphere in the past few decades. It’s been calculated that to equilibrate to current CO2 levels the planet still needs to warm by half a degree. And every ten days another billion tons of carbon dioxide are released. Last month, the World Meteorological Organization announced that the concentration of carbon dioxide in the atmosphere jumped by a record amount in 2016.

No one can say exactly how warm the world can get before disaster—the inundation of low-lying cities, say, or the collapse of crucial ecosystems, like coral reefs—becomes inevitable. Officially, the threshold is two degrees Celsius (3.6 degrees Fahrenheit) above preindustrial levels. Virtually every nation signed on to this figure at a round of climate negotiations held in Cancún in 2010.

Meeting in Paris in 2015, world leaders decided that the two-degree threshold was too high; the stated aim of the climate accord is to hold “the increase in the global average temperature to well below 2°C” and to try to limit it to 1.5°C. Since the planet has already warmed by one degree and, for all practical purposes, is committed to another half a degree, it would seem impossible to meet the latter goal and nearly impossible to meet the former. And it is nearly impossible, unless the world switches course and instead of just adding CO2 to the atmosphere also starts to remove it.

The extent to which the world is counting on negative emissions is documented by the latest report of the Intergovernmental Panel on Climate Change, which was published the year before Paris. To peer into the future, the I.P.C.C. relies on computer models that represent the world’s energy and climate systems as a tangle of equations, and which can be programmed to play out different “scenarios.” Most of the scenarios involve temperature increases of two, three, or even four degrees Celsius—up to just over seven degrees Fahrenheit—by the end of this century. (In a recent paper in the Proceedings of the National Academy of Sciences, two climate scientists—Yangyang Xu, of Texas A. & M., and Veerabhadran Ramanathan, of the Scripps Institution of Oceanography—proposed that warming greater than three degrees Celsius be designated as “catastrophic” and warming greater than five degrees as “unknown??” The “unknown??” designation, they wrote, comes “with the understanding that changes of this magnitude, not experienced in the last 20+ million years, pose existential threats to a majority of the population.”)

When the I.P.C.C. went looking for ways to hold the temperature increase under two degrees Celsius, it found the math punishing. Global emissions would have to fall rapidly and dramatically—pretty much down to zero by the middle of this century. (This would entail, among other things, replacing most of the world’s power plants, revamping its agricultural systems, and eliminating gasoline-powered vehicles, all within the next few decades.) Alternatively, humanity could, in effect, go into hock. It could allow CO2 levels temporarily to exceed the two-degree threshold—a situation that’s become known as “overshoot”—and then, via negative emissions, pull the excess CO2 out of the air.

The I.P.C.C. considered more than a thousand possible scenarios. Of these, only a hundred and sixteen limit warming to below two degrees, and of these a hundred and eight involve negative emissions. In many below-two-degree scenarios, the quantity of negative emissions called for reaches the same order of magnitude as the “positive” emissions being produced today.

“The volumes are outright crazy,” Oliver Geden, the head of the E.U. research division of the German Institute for International and Security Affairs, told me. Lackner said, “I think what the I.P.C.C. really is saying is ‘We tried lots and lots of scenarios, and, of the scenarios which stayed safe, virtually every one needed some magic touch of a negative emissions. If we didn’t do that, we ran into a brick wall.’ ”

Continue at: https://www.newyorker.com/magazine/2017/11/20/can-carbon-dioxide-removal-save-the-world
The text above is owned by the site above referred.
Here is only a small part of the article, for more please follow the link
Also see:

Benchmarking Biopharma’s Carbon Footprint

Leave a Reply

Your email address will not be published. Required fields are marked *